New J-WAFS-led project combats food insecurity

Today the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) at MIT announced a new research project, supported by Community Jameel, to tackle one of the most urgent crises facing the planet: food insecurity. Approximately 276 million people worldwide are severely food insecure, and more than half a million face famine conditions
    
To better understand and analyze food security, this three-year research project will develop a comprehensive index assessing countries’ food security vulnerability, called the Jameel Index for Food Trade and Vulnerability. Global changes spurred by social and economic transitions, energy and environmental policy, regional geopolitics, conflict, and of course climate change, can impact food demand and supply. The Jameel Index will measure countries’ dependence on global food trade and imports and how these regional-scale threats might affect the ability to trade food goods across diverse geographic regions. A main outcome of the research will be a model to project global food demand, supply balance, and bilateral trade under different likely future scenarios, with a focus on climate change. The work will help guide policymakers over the next 25 years while the global population is expected to grow, and the climate crisis is predicted to worsen.    

The work will be the foundational project for the J-WAFS-led Food and Climate Systems Transformation Alliance, or FACT Alliance. Formally launched at the COP26 climate conference last November, the FACT Alliance is a global network of 20 leading research institutions and stakeholder organizations that are driving research and innovation and informing better decision-making for healthy, resilient, equitable, and sustainable food systems in a rapidly changing climate. The initiative is co-directed by Greg Sixt, research manager for climate and food systems at J-WAFS, and Professor Kenneth Strzepek, climate, water, and food specialist at J-WAFS.

The dire state of our food systems

The need for this project is evidenced by the hundreds of millions of people around the globe currently experiencing food shortages. While several factors contribute to food insecurity, climate change is one of the most notable. Devastating extreme weather events are increasingly crippling crop and livestock production around the globe. From Southwest Asia to the Arabian Peninsula to the Horn of Africa, communities are migrating in search of food. In the United States, extreme heat and lack of rainfall in the Southwest have drastically lowered Lake Mead’s water levels, restricting water access and drying out farmlands. 

Social, political, and economic issues also disrupt food systems. The effects of the Covid-19 pandemic, supply chain disruptions, and inflation continue to exacerbate food insecurity. Russia’s invasion of Ukraine is dramatically worsening the situation, disrupting agricultural exports from both Russia and Ukraine — two of the world’s largest producers of wheat, sunflower seed oil, and corn. Other countries like Lebanon, Sri Lanka, and Cuba are confronting food insecurity due to domestic financial crises.

Few countries are immune to threats to food security from sudden disruptions in food production or trade. When an enormous container ship became lodged in the Suez Canal in March 2021, the vital international trade route was blocked for three months. The resulting delays in international shipping affected food supplies around the world. These situations demonstrate the importance of food trade in achieving food security: a disaster in one part of the world can drastically affect the availability of food in another. This puts into perspective just how interconnected the earth’s food systems are and how vulnerable they remain to external shocks. 

An index to prepare for the future of food

Despite the need for more secure food systems, significant knowledge gaps exist when it comes to understanding how different climate scenarios may affect both agricultural productivity and global food supply chains and security. The Global Trade Analysis Project database from Purdue University, and the current IMPACT modeling system from the International Food Policy Research Institute (IFPRI), enable assessments of existing conditions but cannot project or model changes in the future.

In 2021, Strzepek and Sixt developed an initial Food Import Vulnerability Index (FIVI) as part of a regional assessment of the threat of climate change to food security in the Gulf Cooperation Council states and West Asia. FIVI is also limited in that it can only assess current trade conditions and climate change threats to food production. Additionally, FIVI is a national aggregate index and does not address issues of hunger, poverty, or equity that stem from regional variations within a country.

“Current models are really good at showing global food trade flows, but we don’t have systems for looking at food trade between individual countries and how different food systems stressors such as climate change and conflict disrupt that trade,” says Greg Sixt of J-WAFS and the FACT Alliance. “This timely index will be a valuable tool for policymakers to understand the vulnerabilities to their food security from different shocks in the countries they import their food from. The project will also illustrate the stakeholder-guided, transdisciplinary approach that is central to the FACT Alliance,” Sixt adds.

Phase 1 of the project will support a collaboration between four FACT Alliance members: MIT J-WAFS, Ethiopian Institute of Agricultural Research, IFPRI (which is also part of the CGIAR network), and the Martin School at the University of Oxford. An external partner, United Arab Emirates University, will also assist with the project work. This first phase will build on Strzepek and Sixt’s previous work on FIVI by developing a comprehensive Global Food System Modeling Framework that takes into consideration climate and global changes projected out to 2050, and assesses their impacts on domestic production, world market prices, and national balance of payments and bilateral trade. The framework will also utilize a mixed-modeling approach that includes the assessment of bilateral trade and macroeconomic data associated with varying agricultural productivity under the different climate and economic policy scenarios. In this way, consistent and harmonized projections of global food demand and supply balance, and bilateral trade under climate and global change can be achieved. 

“Just like in the global response to Covid-19, using data and modeling are critical to understanding and tackling vulnerabilities in the global supply of food,” says George Richards, director of Community Jameel. “The Jameel Index for Food Trade and Vulnerability will help inform decision-making to manage shocks and long-term disruptions to food systems, with the aim of ensuring food security for all.”

On a national level, the researchers will enrich the Jameel Index through country-level food security analyses of regions within countries and across various socioeconomic groups, allowing for a better understanding of specific impacts on key populations. The research will present vulnerability scores for a variety of food security metrics for 126 countries. Case studies of food security and food import vulnerability in Ethiopia and Sudan will help to refine the applicability of the Jameel Index with on-the-ground information. The case studies will use an IFPRI-developed tool called the Rural Investment and Policy Analysis model, which allows for analysis of urban and rural populations and different income groups. Local capacity building and stakeholder engagement will be critical to enable the use of the tools developed by this research for national-level planning in priority countries, and ultimately to inform policy. 
 
Phase 2 of the project will build on phase 1 and the lessons learned from the Ethiopian and Sudanese case studies. It will entail a number of deeper, country-level analyses to assess the role of food imports on future hunger, poverty, and equity across various regional and socioeconomic groups within the modeled countries. This work will link the geospatial national models with the global analysis. A scholarly paper is expected to be submitted to show findings from this work, and a website will be launched so that interested stakeholders and organizations can learn more information.